Single Sideband
From our study of the
single sideband
transmitter material you may transmit only one sideband of an AM signal and retain the information transmitted. Now you will see how a single sideband signal is received.
Advantages
The picture below illustrates the transmitted signal for both AM and ssb. Ssb communications has several advantages. When you eliminate the carrier and one sideband, all of the transmitted power is concentrated in the other sideband. Also, an ssb signal occupies a smaller portion of the frequency spectrum in comparison to the AM signal. This gives us two advantages, narrower receiver bandpass and the ability to place more signals in a small portion of the frequency spectrum.
Comparison of AM and single sideband transmitted signals.
Ssb communications systems have some drawbacks. The process of producing an ssb signal is somewhat more complicated than simple amplitude modulation, and frequency stability is much more critical in ssb communication. While we don’t have the annoyance of heterodyning from adjacent signals, a weak ssb signal is sometimes completely masked or hidden from the receiving station by a stronger signal. Also, a carrier of proper frequency and amplitude must be reinserted at the receiver because of the direct relationship between the carrier and sidebands.
The picture below is a block diagram of a basic ssb receiver. It is not significantly different from a conventional superheterodyne AM receiver. However, a special type of detector and a carrier reinsertion oscillator must be used. The carrier reinsertion oscillator must furnish a carrier to the detector circuit. The carrier must be at a frequency which corresponds almost exactly to the position of the carrier used in producing the original signal.
Basic ssb receiver.
Rf amplifier sections of ssb receivers serve several purposes. Ssb signals may exist in a small portion of the frequency spectrum; therefore, filters are used to supply the selectivity necessary to adequately receive only one of them. These filters help you to reject noise and other interference.
Ssb receiver oscillators must be extremely stable. In some types of ssb data transmission, a frequency stability of ±2 hertz is required. For simple voice communications, a deviation of ±50 hertz may be tolerable.
These receivers often employ additional circuits that enhance frequency stability, improve image rejection, and provide automatic gain control (agc). However, the circuits contained in this block diagram are in all single-sideband receivers.
(back)
(top)
(next)
(return to communications page)
|