Home
About-Me
AC Current
AC Motors
AC Generators
Amplification
Antenna Principles
Basic Electronics
Batteries
Blog it!
Capacitance
Circuit Control
Circuit Measuring
Circuit-Protection
Cable Connectors
Conductors
DC Current
DC Motors
Diodes
E-Goods
Electron Tubes
Generators
Gyros
Hoplinks
Inductance
Logic
Meters
Microwaves
More-Antennas
Oscillators
Our Visitor's
Power
Power Supplies
Project Videos
RADAR
RADAR-Parts
Radio Waves
Reactance
Resistance
RF-Antennas
RLC-Circuits
Safety
Servos
Soldering
Special Logic
Specialty Tubes
Synchros
The-Oscilloscope
Spectrum Analyzer
Tubes Cont. -
Transformers
Transistors
Transmission Lines
Trans. Lines Cont.-
Tuned Circuits
Voltage
Waveguides
Wave Propagation
Wiring Techniques

Subscribe To This Site
XML RSS
Add to Google
Add to My Yahoo!
Add to My MSN
Subscribe with Bloglines

Transmission-line-length

A transmission line is considered to be electrically short when its physical length is short compared to a quarter wavelength of the energy it is to carry.

NOTE: In this module, for ease of reading, the value of the wavelength will be spelled out in some cases, and in other cases, the numerical value will be used.





A transmission line is electrically long when its physical length is long compared to a quarter- wavelength of the energy it is to carry. You must understand that the terms "short" and "long" are relative ones. For example, a line that has a physical length of 3 meters (approximately 10 feet) is considered quite short electrically if it transmits a radio frequency of 30 kilohertz. On the other hand, the same transmission line is considered electrically long if it transmits a frequency of 30,000 megahertz.

To show the difference in physical and electrical lengths of the lines mentioned above, compute the wavelength of the two frequencies, taking the 30-kilohertz example first:

wavelength of the two frequencies

Wavelength of the two frequencies.


Now, computing the wavelength for the line carrying 30,000 megahertz:

wavelength of the two frequencies

Wavelength of the two frequencies.


Thus, you can see that a 3-meter line is electrically very short for a frequency of 30 kilohertz. Also, the 3-meter line is electrically very long for a frequency of 30,000 megahertz.

When power is applied to a very short transmission line, practically all of it reaches the load at the output end of the line. This very short transmission line is usually considered to have practically no electrical properties of its own, except for a small amount of resistance.

However, the picture changes considerably when a long line is used. Since most transmission lines are electrically long (because of the distance from transmitter to antenna), the properties of such lines must be considered. Frequently, the voltage necessary to drive a current through a long line is considerably greater than the amount that can be accounted for by the impedance of the load in series with the resistance of the line.

(back) (top) (next) (return to transmission lines page)





Follow us on Twitter!





Like what you have seen so far? Help keep this site fresh! Donations are welcome.




Subscribe to this site!


Enter your E-mail Address
Enter your First Name (optional)
Then

Don't worry -- your e-mail address is totally secure.
I promise to use it only to send you Learn-about-electronics.


SiteSearch Google


Custom Search


Translate your page

If English is not your first language you can Translate the text on this page to any one of the languages found in the drop down menu. Select your language from the list for an instant translation.



Find it on Amazon





You are the

joomla analytics
unique visitor to this site.