Home
About-Me
AC Current
AC Motors
AC Generators
Amplification
Antenna Principles
Basic Electronics
Batteries
Blog it!
Capacitance
Circuit Control
Circuit Measuring
Circuit-Protection
Cable Connectors
Conductors
DC Current
DC Motors
Diodes
E-Goods
Electron Tubes
Generators
Gyros
Hoplinks
Inductance
Logic
Meters
Microwaves
More-Antennas
Oscillators
Our Visitor's
Power
Power Supplies
Project Videos
RADAR
RADAR-Parts
Radio Waves
Reactance
Resistance
RF-Antennas
RLC-Circuits
Safety
Servos
Soldering
Special Logic
Specialty Tubes
Synchros
The-Oscilloscope
Spectrum Analyzer
Tubes Cont. -
Transformers
Transistors
Transmission Lines
Trans. Lines Cont.-
Tuned Circuits
Voltage
Waveguides
Wave Propagation
Wiring Techniques

Subscribe To This Site
XML RSS
Add to Google
Add to My Yahoo!
Add to My MSN
Subscribe with Bloglines

Waveguide-transmission

The WAVEGUIDE is classified as a transmission line. However, the method by which it transmits energy down its length differs from the conventional methods. Waveguides are cylindrical, elliptical, or rectangular (cylindrical and rectangular shapes are shown in the figure below). The rectangular waveguide is used more frequently than the cylindrical waveguide.

Waveguides

Waveguides




The term waveguide can be applied to all types of transmission lines in the sense that they are all used to guide energy from one point to another. However, usage has generally limited the term to mean a hollow metal tube or a dielectric transmission line. In this chapter, we use the term waveguide only to mean "hollow metal tube." It is interesting to note that the transmission of electromagnetic energy along a waveguide travels at a velocity somewhat slower than electromagnetic energy traveling through free space.

A waveguide may be classified according to its cross section (rectangular, elliptical, or circular), or according to the material used in its construction (metallic or dielectric). Dielectric waveguides are seldom used because the dielectric losses for all known dielectric materials are too great to transfer the electric and magnetic fields efficiently.

The installation of a complete waveguide transmission system is somewhat more difficult than the installation of other types of transmission lines. The radius of bends in the waveguide must measure greater than two wavelengths at the operating frequency of the equipment to avoid excessive attenuation. The cross section must remain uniform around the bend. These requirements hamper installation in confined spaces.

If the waveguide is dented, or if solder is permitted to run inside the joints, the attenuation of the line is greatly increased. Dents and obstructions in the waveguide also reduce its breakdown voltage, thus limiting the waveguide�s power-handling capability because of possible arc over. Great care must be exercised during installation; one or two carelessly made joints can seriously inhibit the advantage of using the waveguide.

We will not consider the waveguide operation in this tutorial, since waveguide theory is discussed in microwave principles.

(back) (top) (next) (return to transmission lines page)





Follow us on Twitter!





Like what you have seen so far? Help keep this site fresh! Donations are welcome.




Subscribe to this site!


Enter your E-mail Address
Enter your First Name (optional)
Then

Don't worry -- your e-mail address is totally secure.
I promise to use it only to send you Learn-about-electronics.


SiteSearch Google


Custom Search


Translate your page

If English is not your first language you can Translate the text on this page to any one of the languages found in the drop down menu. Select your language from the list for an instant translation.



Find it on Amazon





You are the

joomla analytics
unique visitor to this site.