Practical-dc-generator
THE PRACTICAL DC GENERATOR
The actual construction and operation of a practical dc generator differs somewhat from our elementary generators. The differences are in the construction of the armature, the manner in which the armature is wound, and the method of developing the main field.
A generator that has only one or two armature loops has high ripple voltage. This results in too little current to be of any practical use. To increase the amount of current output, a number of loops of wire are used. These additional loops do away with most of the ripple. The loops of wire, called windings, are evenly spaced around the armature so that the distance between each winding is the same.
The commutator in a practical generator is also different. It has several segments instead of two or four, as in our elementary generators. The number of segments must equal the number of armature coils
GRAMME-RING ARMATURE
The diagram of a GRAMME-RING armature is shown in the illustration below, view A. Each coil is connected to two commutator segments as shown. One end of coil 1 goes to segment A, and the other end of coil 1 goes to segment B. One end of coil 2 goes to segment C, and the other end of coil 2 goes to segment B.
The rest of the coils are connected in a like manner, in series, around the armature. To complete the series arrangement, coil 8 connects to segment A. Therefore, each coil is in series with every other coil.
Gramme-ring armature.
View B shows a composite view of a Gramme-ring armature. It illustrates more graphically the physical relationship of the coils and commutator locations. The windings of a Gramme-ring armature are placed on an iron ring.
A disadvantage of this arrangement is that the windings located on the inner side of the iron ring cut few lines of flux. Therefore, they have little, if any, voltage induced in them. For this reason, the Gramme-ring armature is not widely used.
(back)
(top)
(next)
(return to generators page)
|